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and V. V. Nechaev 

For the molecules of pyrrole and its symmetric deuterated derivatives, vibrational spectra have been analyzed, 
and the force field has been defined in natural coordinates. 

INTRODUCTION 

The vibrational spectra of six-membered and five-membered azacyclic compounds were investigated fundamentally 
many years ago [1-3]. However, with the particular methods of calculation used in those pioneering works, the force constants 

of the structural elements of the rings could be determined only in the form of linear combinations of force constants of natural 

dependent coordinates. Therefore, in a number of recent studies [4-7], ab initio calculations and interpretation of the 

vibrational spectra of pyrrole and pyridine have been performed again, as well as empirical calculations of the force field of 
pyridine and its derivatives in natural coordinates. Here we must note that such calculations lead to a reexamination of the 

assignment of frequencies; for example, the selection of frequencies of planar vibrations of pyrrole in [7] is different from the 
selection that was made in [3]. Such a discrepancy makes it impossible to evaluate the available results without ambiguity, 

and hence further studies are required. 
In the work reported here, we carried out a theoretical study of the vibrational spectra of pyrrole and its deuterated 

derivatives. This compound is of interest because the pyrrole ring is a structural fragment in a number of important biological 
compounds (tryptophan, porphyrin complexes), and its derivatives are used extensively in pharmacology. Also, it is important 

to define a reliable force field of pyrrole in natural coordinates, with the aim of carrying over these calculations to more 

complex compounds in order to interpret their vibrational spectra. 

THEORETICAL 

Successive solution of the direct and inverse vibrational problem involves solution of the system 

CKC=A (1) 
~A-IC=E, 

where A is the matrix of kinematic coefficients; K is the matrix of force constants; A is the diagonal matrix containing the 

vibrational frequencies; C is the matrix of eigenvectors; E is the unitary matrix. 
The algorithm proposed in [8] for solution of the system (1) consists of the following: First, the matrix of kinematic 

coefficients A is diagonalized; i.e., eigenvalues X and eigenvectors C A are found such that 

"OAACA=~. (2) 

Then, the eigenvectors C A are normalized 

C 'A.-~. C A~t 1'/2 (3) 
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TABLE 1. Frequencies of Fundamental Vibrations of Pyrrole and Its Deuterated 

Derivatives, cm -1 

Assignment D5 
of vibra- 
tions exptl, 

q (NH, ND) 
q (CH, CD) 
q (CH,.CD) 
q (CH, CD) 
q (CH, CD) 
Q (CC, CN) 
fll (NI-IC) 
y (CNC, CCC) 
Q (CC, CN), fll 
fl (HCC, Dec) 
fl (HCC, DCC) 
Q (CO) 
Q (CO, NC) 
fl (HCC, DCC) 
fl (HCC, DCC) 
fl (HCC, DCC) 
fl (HCC, DCC) 
p (CH, CD) 
p (CH, CD) 
p (CH, CD) 
p (CH, CD) 
Jc (CC) 

tc (CC) 
t9 (NH, ND) 

660 
874 
820 
742 
707 
600 
588 
454 

647 
869 
826 
734 
710 
618 
601 
474 

658 
866 869 
791 824 
741 732 
658 618 
600 606 
581 603 
387 372 

493 
833 
786 
583 
562 
466 
449 
422 

499 493 
812 832 
786 696 
598 583 
562 554 
46! 462 

443 
367 

2609 

2375 
2342 
2305 
1457 

1317 
1327 

728 

I080 
908 
766 
516 
502 
813 
693 
570 
565 

438 
369 

and, by means of the matrix C'A, a new matrix of force constants K' is constructed in accordance with the formulas 

"C'AKC' A=K'. (4) 

Determination of  the eigenvalues and eigenvectors of the matrix K' gives 

CKK'CK=A K (5) 

the theoretical frequencies A T of  which, as it is easy to show, satisfy the system (1). The eigenvectors C = C'ACK also satisfy 

the system (I) and are the forms of the vibrations. 

This algorithm has been used as the basis for the SCMEX program for solution of the inverse vibrational problem. 

If  the experimental frequencies Aexp do not coincide with A T, it is then possible in this last matrix to replace all or a number 

of the frequencies by experimental frequencies AO). From Eq. (5), replacing AT( by AO), we find a new matrix of force 
constants 

K ' 0 )  =CKA0)'CK, (6) 

which we then diagonalize in order to find the frequencies and forms of  the normal vibrations. 

The process is repeated until reasonable agreement is obtained between the experimental and calculated frequencies. 

The force field K (i) that gives such agreement will be the solution of the inverse vibrational problem. 

An important advantage of this algorithm is that the matrices A and K can be assigned in a basis of so-called natural 

coordinates, which is very convenient. In the transformation (4), dependent coordinates are eliminated, since diagonalization 

of K'  gives (3N - 6) nonzero eigenvalues. As the final result, we obtain a matrix of vibration forms C, vibration frequencies 

corresponding to the experimental values, and a better-defined force field K '(i) that makes it possible to reproduce the 

experimental frequencies. This matrix K'(i) is obtained in independent coordinates; on the basis of Eq. (4), however, we can 
change over to a force field K (i) in natural coordinates 

C A -~j K'( i) -~i "O A = K( O. (7) 

557 



c5/ 

H1 

Fig. 1 

Let us note that in the transformations (3) and (7), we have used all of the eigenvalues h i of the matrix A, however 

small they may be. An analogous method was proposed in [9] for solving the inverse vibrational problem by a matching 

method using a perturbed matrix A. 

Thus, the algorithm embodied in the SCMEX program has two important features: 

1) The input data are assigned in a basis of natural coordinates, and this facilitates the preparation of the data for 

complex molecules. 

2) After solving the inverse vibrational problem, the refined force field is also obtained in natural coordinates, so that 

it is possible to simply carry over the force constants of the fragments and use them in subsequent calculations. 

The calculations described in the following section were performed by means of a set of programs that included not 

only the SCMEX that we have just described, but also the KCDATA program, which facilitates the preparation of the input 

data, and the KINCOF program for calculation of the matrix of kinematic coefficients in natural coordinates. This set of 

programs was implemented for personal computers of the IBM-PC class; a system-developed menu is maintained; all programs 

operate in the dialogue mode, so that they can be handled successfully by personnel with very little theoretical knowledge or 

experience with personal computer operation. 

DISCUSSION OF RESULTS 

The calculation was performed in natural coordinates. The notation system used in defining the natural coordinates 

is shown in Fig. 1, where Q is the coordinate of stretching vibration of the C - C  or C - N  bond; q is the same for the C - H  

or N - H  bond; 3' describes the bending vibration of the internal angle of the ring;/3 describes vibration of the angle N - C - H  

or H - C - C ;  in addition, p is the out-of-plane vibration of the C - H  bond, and K is the out-of-plane vibration of the C - C  

bond. The number of dependent coordinates is 35 (5 Q-coordinates, 5 q-coordinates, 5 7-coordinates, 10/3-coordinates, 5 p- 

coordinates, and 5 K-coordinates. 
The numerical values of the geometric parameters were taken from [10]. On the basis of these parameters, by means 

of the KINCOF program, we determined the matrices of kinematic coefficients for four molecules: C4NH 5, C4NDH 4 

(replacement of H 1 atom), C4NHD 4 (replacement of all hydrogen atoms other than H~), and C4ND 5. 
As the zero approximation of the force field we took the force constants for pyridine and pyrrole from [l-3] for 

coordinates that are not coupled by additional relationships. For the coupled coordinates we performed approximate estimates 

as described in [3]. With such an approximation, we were able to give a preliminary interpretation of the vibrations; in 

particular to prefer the assignment of frequencies of planar vibrations that was made in [3] over the assignment made in [7]. 

Then, using the above-described SCMEX program, we carried out a refinement of the force field on the basis of experimental 

frequencies of four molecules. These results are presented in Table 1. 
The matrix of force constants has an order of 35 and is broken up into two independent blocks (25 planar vibrations 

and 10 out-of-plane vibrations). In principle, each problem can be solved separately. However, the saving of time when using 

a modern computer is so insignificant that it is more convenient to solve the problems simultaneously, so that the change of 

the spectrum upon deuteration is known immediately. 
As a result of the calculation, we obtained the following values for the force constants (in units of 106 cm-2): 
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Diagonal force constants: KQ(CN) = 12,1; KQ(C2C3) = 11,7; 
KQ(C3C4) = 10,0; Kq(NH) = 11,3; Kq(CH) = 8,63; K),(CHC) = 4,4; Ky(NCC) = 
= 4,5; Ky(CCC) = 4,65; Kfl(HNC) = 0,75; K/3(NCH) = 0,60; K/3(HCC) = 0,65; 
Kp(NH) = 0,33; Kp(CH) = 0,51; KK (NC) = 1,20; Kc (C2Ca) -- 1,15; 
K ~: (C3C4) = 1,05; 

Basic interactions: KQQ(NC, C2C3) = 0,6; KQQ(NC, C3C4) =-1,1; 
KQQ(NC2, NCs)=  2,2; KQq(NC, NHI) --- 0,27; KQq(NC2, C2H2)----0,1; 
KQ?,(NC, CNC) -- 1,55; KQI,(NC, NCC) = 1,65; KQ),(NC, CCC) = -0,5; 
KQfl(NC, HNC) = 0,t; KQfi(NC, NCH) = 0,15; K~36(NC, HCC) ---0,15; 
KQQ(C2C3, C3C4) = 1,25; KQQ(C2C3, C4C5) =-1,25; KQQ(C2C3, C5N) =-1,6; 
KqV(C2H2, NC2C3) = 0,3; Kqy(C2H2, C2C3C4) =-0,3. 

These results do not contradict the existing data, except that the numerical values of the force constants Kq(CH) = 9.0 
that were determined in [3], which we took as the zero approximation, gave unduly high values of the calculated vibration 
frequencies of the CH bonds. For our calculation, the benzene-pyridine approximation is more suitable. 

As a result of our work, the inverse vibrational problem has been completely solved, and the vibrational spectra of 
pyrrole and its deuterated derivatives have been interpreted. In addition, these calculations have confirmed the serviceability 

and convenience of the proposed set of programs, which can be furnished upon written request. 
In the future, we plan to continue this work, using the results we have obtained in a calculation of the indole molecule. 
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